博客
关于我
Hat’s Words(字典树)
阅读量:620 次
发布时间:2019-03-13

本文共 1085 字,大约阅读时间需要 3 分钟。

为了解决这个问题,我们需要找出所有可以被分解为恰好两个其他词组成的词,这些词被称为“帽子的词”。我们可以使用哈希表来快速判断一个子串是否存在,从而高效地解决这个问题。

方法思路

  • 读取输入并构建哈希表:首先读取所有词,并将它们存储在一个哈希表中,以便快速查找。
  • 检查每个词:对于每个词,尝试所有可能的分割点,将其分成前后两部分,检查这两部分是否都存在于哈希表中。
  • 收集结果:将满足条件的帽子的词收集起来,排序后输出。
  • 解决代码

    #include 
    #include
    #include
    #include
    using namespace std;int main() { unordered_map
    word_map; vector
    words; string word; while (cin >> word) { words.push_back(word); word_map[word] = true; } vector
    results; for (auto &w : words) { int len = w.length(); for (int i = 1; i < len; ++i) { string prefix = w.substr(0, i); string suffix = w.substr(i); if (word_map.find(prefix) != word_map.end() && word_map.find(suffix) != word_map.end()) { results.push_back(w); break; } } } sort(results.begin(), results.end()); for (auto &r : results) { cout << r << endl; } return 0;}

    代码解释

  • 读取输入:使用unordered_map存储所有词,vector存储所有读取的词。
  • 构建哈希表:将每个词插入到哈希表中,以便快速查找。
  • 检查分割点:对于每个词,遍历所有可能的分割点,检查分割后的前缀和后缀是否都存在于哈希表中。如果存在,则将该词加入结果列表。
  • 排序和输出:对结果列表进行排序,并按顺序输出每个帽子的词。
  • 这个方法通过使用哈希表进行快速查找,确保了在合理的时间内解决问题,适用于输入规模较大的情况。

    转载地址:http://aueaz.baihongyu.com/

    你可能感兴趣的文章
    NO32 网络层次及OSI7层模型--TCP三次握手四次断开--子网划分
    查看>>
    NOAA(美国海洋和大气管理局)气象数据获取与POI点数据获取
    查看>>
    NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
    查看>>
    node exporter完整版
    查看>>
    Node JS: < 一> 初识Node JS
    查看>>
    Node Sass does not yet support your current environment: Windows 64-bit with Unsupported runtime(72)
    查看>>
    Node 裁切图片的方法
    查看>>
    Node+Express连接mysql实现增删改查
    查看>>
    node, nvm, npm,pnpm,以前简单的前端环境为什么越来越复杂
    查看>>
    Node-RED中Button按钮组件和TextInput文字输入组件的使用
    查看>>
    Node-RED中Switch开关和Dropdown选择组件的使用
    查看>>
    Node-RED中使用html节点爬取HTML网页资料之爬取Node-RED的最新版本
    查看>>
    Node-RED中使用JSON数据建立web网站
    查看>>
    Node-RED中使用json节点解析JSON数据
    查看>>
    Node-RED中使用node-random节点来实现随机数在折线图中显示
    查看>>
    Node-RED中使用node-red-browser-utils节点实现选择Windows操作系统中的文件并实现图片预览
    查看>>
    Node-RED中使用node-red-contrib-image-output节点实现图片预览
    查看>>
    Node-RED中使用node-red-node-ui-iframe节点实现内嵌iframe访问其他网站的效果
    查看>>
    Node-RED中使用Notification元件显示警告讯息框(温度过高提示)
    查看>>
    Node-RED中使用range范围节点实现从一个范围对应至另一个范围
    查看>>